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Abstract

Time-dependent, two layer hydraulic exchange flow is studied using an idealised shal-
low water model. It is found that barotropic time-dependent perturbations, representing
tidal forcing, increase the baroclinic exchange flux above the steady hydraulic limit, with
flux increasing monotonically with tidal amplitude (measured either by height or flux5

amplitude over a tidal period). Exchange flux also depends on the non-dimensional
tidal period, γ, which was introduced by Helfrich (1995). Resonance complicates the
relationship between exchange flux and height amplitude, but, when tidal strength is
characterised by flux amplitude, exchange flux is a monotonic function of γ.

1 Introduction10

Flow of stratified water through ocean straits makes an important contribution to the
evolution of ocean stratification, affecting global circulation and the local dynamics of
estuaries and semi-enclosed basins. For example, exchange flow through the Strait
of Gibraltar at the mouth of the Mediterranean Sea controls the salinity budget of the
evaporative Mediterranean basin (Bray et al., 1995). Furthermore, the dense, saline15

outflow of water from Gibraltar can be detected as a distinct water mass across the
North Atlantic (Sy, 1988; Harvey and Arhan, 1988). It follows that characterisation of
flow through straits is an important problem, especially considering the difficulty most
ocean and climate models face in resolving strait dynamics.

Internal hydraulic theory can give a useful estimate of density-driven flow through20

straits in particular cases (Wood, 1970; Armi, 1986). This theory can be used to predict
an upper bound for exchange flow through a strait (Armi and Farmer, 1987). However,
this upper bound can be exceeded in cases where a time-dependent forcing, such as
tidal flow, exists (Armi and Farmer, 1986).

Stigebrandt (1977) proposed a simple amendment to the hydraulic solution which25

showed reasonable agreement with laboratory experiments. This theory was super-

2000

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/3/1999/2006/osd-3-1999-2006-print.pdf
http://www.ocean-sci-discuss.net/3/1999/2006/osd-3-1999-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


OSD
3, 1999–2020, 2006

Tides in exchange
flows

L. M. Frankcombe and
A. McC. Hogg

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

seded by Armi and Farmer (1986), who formulated a quasi-steady solution based on
hydraulically controlled solutions with a barotropic throughflow. The quasi-steady so-
lution assumed that tidal variations were sufficiently slow so that hydraulic control was
continually established; however, hydraulic control itself is not well defined in a time de-
pendent flow and it can be shown that tidal variations may exceed the frequency over5

which the quasi-steady solution is valid. Helfrich (1995) introduced a nondimensional
parameter, γ, the ratio of tidal period to the time taken for a wave to traverse the strait.
It is defined as

γ ≡
T
√
g′H

l
(1)

where T is the period of the wave, g′=g∆ρ/ρ is reduced gravity, H is the total fluid10

height and l is the length scale of the channel, i.e. the distance between the narrowest
part of the channel (where channel width is b0) and the point where channel width is
2b0. Helfrich (1995) predicted that flux would depend upon both the dynamic strait
length γ, and the amplitude of the tide. This prediction was consistent with simulations
from a simple numerical model with a rigid lid. Helfrich also conducted laboratory15

experiments which showed that flux depends on γ, but that mixing and other effects
act to reduce the flux.

Additional experiments were conducted by Phu (2001) (reported by Ivey, 2004), in
which both tidal amplitude and frequency were varied. It was found that exchange flux
was strongly dependent on tidal amplitude, but that there was no systematic depen-20

dence upon tidal period, over a wide range of 2<γ<70 (Ivey, 2004). This finding is
inconsistent with the analytical predictions, numerical simulations and experiments of
Helfrich (1995).

In this paper we take a different, numerical, approach with the goal of establishing
the role of tidal period in exchange flows. We use a simple two-layer model of the25

shallow water equations to calculate the response of hydraulic exchange flows to time-
dependent forcing. Barotropic forcing is induced at the boundaries and propagates into
the domain as a free surface wave (unlike Helfrich’s baroclinic numerical model which
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used a rigid lid). The waves modify the flux, which can be accurately measured, and
the results are compared to the quasi-steady solution of Armi and Farmer (1986), the
predictions of Helfrich (1995) and the experimental results of Phu (2001).

We begin the paper by outlining the model and boundary conditions in Sect. 2. Sec-
tion 3 shows the results of the model, which are developed to span a wide parameter5

space in both the frequency and amplitude of time-dependent forcing. These results
are discussed in Sect. 4, and application to geophysical flows is considered.

2 The Model

2.1 Shallow water equations

The model used here is formulated to include the physics of time-dependent exchange10

flows with the minimum possible alterations to the steady hydraulic equations. We
therefore solve the one-dimensional nonlinear shallow water equations for flow along a
rectangular channel. The channel has length 2L and variable width b(x). We assume
that flow occurs within two distinct immiscible fluid layers. The thickness of each layer
is hi (x, t) – as shown in Fig. 1. The layers are assumed to have constant density ρi ,15

and velocity ui (x, t) which depends upon horizontal, but not vertical, position.
The conservation of mass (or continuity) equation for each layer is given by

∂hi

∂t
= −1

b
∂
∂x

(buihi ) . (2)

The conservation of momentum equations are

∂u1

∂t
+ u1

∂u1

∂x
= −g ∂

∂x
(h2 + h1) + g′∂h2

∂x
+ Ah

∂2u1

∂x2
(3)20

and

∂u2

∂t
+ u2

∂u2

∂x
= −g ∂

∂x
(h2 + h1) + Ah

∂2u2

∂x2
, (4)
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where the reduced gravity, g′, is defined as follows:

g′ ≡
g(ρ1 − ρ2)

ρ1
.

Note that we have included a lateral viscosity with a constant coefficient Ah, which is
required for numerical stability but is minimised in the simulations.

The solution of (2)–(4) under the assumption of a steady flow may yield hydrauli-5

cally controlled flow solutions (depending upon the boundary conditions at either end
of the channel). The full time-dependent equations may be solved numerically in a
straightforward manner; but results are again dependent upon the correct boundary
conditions.

2.2 Boundary conditions10

The boundary conditions used for this model are the characteristic open boundary
conditions based on the time-integrating conditions proposed by Nycander and Döös
(2003) and further developed for inertial flows by Nycander et al. (2006). These con-
ditions require us to specify characteristic variables a±E and a±I at each of the open
boundaries. The variables are defined as15

a±E =
1

2H

[
h1 + h2 ±

H1u1 + H2u2√
gH

]
, (5)

a±I =
1

2H

H1h2 − H2h1

H
±

√
H1H2

g′H −∆U2
(u2 − u1)

 . (6)

These equations are formulated by linearising the equations about a state with layer
heights H1 and H2 (where H=H1 + H2), and velocity difference ∆U between the layers.
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The conditions are implemented as follows. Assume, for example, that the boundary
is an h-point of a staggered grid. Then we must specify the inward travelling charac-
teristic variables a±E and a±I . Having done that, the values of h1 and h2 at the boundary
can be expressed in terms of a±E , a±I and the values of u1 and u2 at the point just inside:

h1(∓L) = 2H1a
±
E − 2Ha±I ∓

H1

H
H1u1 + H2u2√

gH
5

±

√
H1H2

g′H −∆U2
(u1 − u2), (7)

h2(∓L) = 2H2a
±
E + 2Ha±I ∓

H2

H
H1u1 + H2u2√

gH

∓

√
H1H2

g′H −∆U2
(u1 − u2). (8)

The above conditions are suitable for sub-critical flow, but this model also needs to10

be able to simulate supercritical two-layer flow. The model is designed to switch to
supercritical flow boundary conditions subject to a test on the criticality of the flow.
There are two modes of supercritical flow (i.e. supercritical with respect to barotropic
and baroclinic modes) and therefore two tests. The test for supercritical barotropic flow
is based on the linear phase speed of a barotropic wave. When15

h1u1 + h2u2

h1 + h2
>
√
g(h1 + h2), (9)

at the right hand end of the channel, flow is adjudged supercritical. There is an anal-
ogous condition at the left hand end of the channel. When this test is satisfied, the
supercritical open boundary conditions are simply

∂h1

∂x
=

∂h2

∂x
= 0, (10)20
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which replaces (7)-(8).
Internally supercritical flow is more complicated. Firstly, using linear internal

wavespeeds to test for internal criticality, we obtain

h2u1 + h1u2

h1 + h2
>

√
h1h2

(h1 + h2)2

(
g′(h1 + h2) − (u1 − u2)2

)
, (11)

at the right hand end of the channel (and an analogous condition for the left hand end).5

It should be noted that the RHS of this condition becomes imaginary when shear is
strong, in which case the wavespeeds coalesce and waves are unstable. Therefore,
we propose that a suitable test for criticality is simply

h2u1 + h1u2

h1 + h2
>

√
h1h2

(h1 + h2)2
Θ, (12)

where10

Θ ≡ max
(

0,
(
g′(h1 + h2) − (u1 − u2)2

))
. (13)

The boundary conditions for internally supercritical flow are found by assuming that
the internal mode is captured primarily by interfacial height, and so we set

∂h1

∂x
= 0, (14)

with h2 calculated using the addition of (7) and (8).15

2.3 Numerical implementation

The domain is spatially discretised on a staggered grid. Velocity is calculated at the
faces of the cells, while layer height is calculated at the centre of the cell. The equations
may then be integrated in time using centred differences. The staggered grid is defined
so that the near-boundary values of velocity can be explicitly calculated from (3,4).20
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The temporal discretisation employs a leapfrog timestep scheme. Leapfrog timestep-
ping routines can produce two diverging solutions. To eliminate this potential problem,
data from different time levels are mixed every 1000 timesteps. The standard parame-
ter set for the simulations is shown in Table 1.

3 Results5

3.1 Exchange flows

The model is initialised with two constant depth, zero velocity layers. Layer depth vari-
ations and velocity are induced by specifying the characteristic boundary conditions,
as seen in the series of snapshots in Fig. 2, which shows the development of the ex-
change flow. Internal waves propagate from either side of the domain, reaching the10

centre of the constriction after about 1 s. Over the next second, hydraulic control is
established at the centre of the channel, and features resembling hydraulic jumps are
formed. It should be noted that the model equations used here cannot resolve shocks
of this nature, and these jump-like features are only stabilised with viscosity. These
features propagate out of the domain, leaving a final steady state exactly matching the15

two-layer maximal hydraulic exchange flow solution, in which flow is internally super-
critical at both ends of the channel. It is notable that there are no significant reflections
from the characteristic open boundary conditions during this adjustment process – this
issue is examined more closely by Nycander et al. (2006).

Time dependence is introduced to this flow by sinusoidally varying the left boundary20

condition coefficient, a+e , with a period of 0.5 s. This simulates a barotropic wave en-
tering from the left, as seen in Fig. 3. The incoming wave travels towards the centre of
the channel where it interacts with the contraction, causing reflections (both baroclinic
and barotropic) to travel back to the left, while the original barotropic wave, which now
includes a small baroclinic component, continues to the right. The waves steepen due25

to nonlinearity as they propagate along the channel.
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Barotropic flux as a function of time at the left-hand boundary is shown in Fig. 4.
Note that the system takes several periods for the oscillations to become regular, as
instantaneous flux is modulated by waves reflected off the contraction. For this rea-
son all results in the following sections were calculated after the initial adjustment had
occurred.5

3.2 Exchange flux in time-dependent systems

The quantity of primary interest in these simulations is the flux of volume (or mass)
exchanged. We quantify this by calculating the total flux in each layer as a function of
time, integrating over a tidal period and averaging the (absolute value of the) two layer
fluxes. This baroclinic exchange flux is then proportional to the net exchange of mass10

(or passive tracer) through the channel. Figure 5 shows the exchange flux anomaly
as a function of nondimensional period γ, for several cases. The flux anomaly has
been scaled by the quasi-steady flux, which was calculated numerically from a series
of steady simulations and sets a theoretical upper limit for the flux.

In the small period (small γ) limit the flux anomaly approaches zero (the steady15

hydraulic limit), and in the large γ limit it approaches the quasi-steady solution in each
of the three cases shown. This is consistent with the predictions of Helfrich (1995);
however here the flux is not a monotonically increasing function of γ. Instead, there
are additional local maxima (the largest being at γ≈3) which sometimes exceed the
quasi-steady limit. These discrepancies are greatest when g′ is large, and when the20

domain length L is increased (dashed line in Fig. 5).
These peaks are due to resonance in the channel between the open boundary and

the contraction. Although the resonance is damped it is continually forced by incoming
energy, and thus has a bounded amplitude. Resonance is strongest when the channel
is long (allowing time for nonlinear steepening to occur), and can be minimised using25

small g′ (possibly because interactions between barotropic and baroclinic modes are
minimised in this case). The resonant period depends on the channel length L as
expected. This resonance occurs even though reflections caused by the boundary
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conditions are significantly smaller than other schemes (Nycander et al., 2006), so it
follows that simulations with other boundary conditions, or lab experiments with solid
end walls, will experience greater problems with resonance. We do not investigate
the source of resonance in this paper; instead, for all tests below, the simulations use
L=0.5 and g′=0.1 to minimise the effect. We use these simulations to quantify the5

effect of tidal period and amplitude on exchange flux.

3.3 Rescaling amplitude

Although resonance is minimised through choice of parameters, it cannot be entirely
eliminated. Notably, this resonance was not observed in Helfrich’s (1995) simulations
(which used a rigid upper surface and imposed barotropic fluctuations at the contrac-10

tion). For consistency with previous work, we prefer to further reduce resonant effects
by taking the observed amplitude of the waves at the centre of the channel (instead
of the amplitude originally imposed at the boundary). It is then possible to define two
tidal amplitudes. Firstly, a represents the peak-to-trough amplitude of fluid height over
the tidal cycle. We refer to this as the height amplitude and it is analogous to the15

method used by Phu (2001) to characterise tidal amplitude. Secondly we can use the
barotropic flux amplitude, Helfrich’s qb0 parameter, which is defined as

qb0 ≡
ub0√
g′H

(15)

where ub0 is the peak-to-trough amplitude of barotropic velocity at the throat over the
tidal cycle.20

This allows us to plot measured (a) height and (b) flux amplitude against γ, as in
Fig. 6 (note the logarithmic axes). Here we see the effect of the resonance – the
measured amplitude, for a given value of imposed a+e amplitude, is not independent of
γ. Moreover, the two measures of amplitude differ significantly as a function of γ.

Numerous simulations across a large range in γ and a+e amplitude were conducted25

and the results have been interpolated onto lines of (a) constant height amplitude, and
2008

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/3/1999/2006/osd-3-1999-2006-print.pdf
http://www.ocean-sci-discuss.net/3/1999/2006/osd-3-1999-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


OSD
3, 1999–2020, 2006

Tides in exchange
flows

L. M. Frankcombe and
A. McC. Hogg

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

(b) constant flux amplitude. We can now plot flux as a function of γ for a number of
different cases – see Fig. 7. Figure 7a shows a peak at γ=1.5, indicating that height
amplitude is not a good measure of the tidal effect on exchange flows. It follows that
for cases with greater amplitude and stronger stratification, such as the dashed lines in
Fig. 5, the height amplitude will be a very poor descriptor of the tidal effects. Figure 7b,5

on the other hand, clearly shows a smooth monotonic transition of flux with γ when
flux amplitude is used as the metric. These results are consistent with predictions of
Helfrich (1995). Thus flux amplitude would appear to be a more useful metric than
height amplitude.

The results are re-plotted in Fig. 8, showing amplitude vs flux for each of the above10

cases. The panels, showing scaled flux as a function of height and flux amplitude
respectively, both show a clear tendency for flux to increase with amplitude. This is
consistent with expectations and with results of Phu (2001). The differences between
the height and flux amplitude are once again noticeable, however the overall trend
remains the same in both cases.15

4 Discussion and conclusions

The results of these simulations confirm that time-dependent forcing leads to an in-
crease in exchange flux compared to the steady state case. Tidal amplitude, as mea-
sured by either height or flux amplitude, has a strong effect on flux, with flux increasing
monotonically with amplitude.20

Flux also depends on the nondimensional tidal period γ. However, resonance with
the open boundary conditions in the numerical simulations performed here modulates
the response. Resonance produces effects which depend strongly upon tidal period.
Nevertheless, if one uses the flux amplitude to characterise tidal strength, then the ex-
change flux is a monotonic function of γ. The relationship between exchange flux and25

height amplitude, on the other hand, is more complicated. Depending on the strength
of resonance this may result in a non-monotonic relationship between exchange flux
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and γ (when a is held constant).
These observations may explain some outstanding discrepancies between previous

studies on this topic. Phu (2001) (reported by Ivey, 2004) used the height amplitude
to characterise tidal strength and found no systematic dependence upon γ over a wide
range in parameter space, while Helfrich (1995) found a strong dependence of flux5

amplitude on γ. Reflections from the solid tank walls in Phu’s (2001) experiments
would have produced resonance, especially for large values of γ (long periods) where
there is ample time for reflections to travel from the walls of the tank to the contraction.
Thus, the height amplitude formalism used by Phu (2001) to characterise tidal strength
may be distorted by resonant effects.10

It follows from this analysis that one can most easily describe geophysical obser-
vations using barotropic flux amplitude. However, measurements of tidal range are
easiest to quantify in terms of height amplitude, rather than flux. It is likely that a
barotropic model of the tidal velocities will be required to be able to apply Helfrich’s
(1995) formalism with any confidence.15
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Table 1. Standard physical and computational parameters for simulations. See Nycander et al.
(2006) for an explanation for the values of the internal and external characteristics.

Parameter Value Description

l 0.5 m Constriction length
Ah 0.008 m2/s Horizontal viscosity
H 0.4 m Total fluid height

bmin 0.1 m Minimum channel width (at x = 0)
bmax 0.2 m Maximum channel width (at x = ±L)
g′ 0.1 m/s2 Reduced gravity

L 0.5 m Channel length
∆t 3×10−7 s Timestep
n 201 Number of gridpoints
∆x 0.005 m Gridlength
a+

e 0.017 External BC coefficient at LHS
a−

e 0.0 External BC coefficient at RHS
a+

i 0.07028 Internal BC coefficient at LHS
a−

i –0.07028 Internal BC coefficient at RHS
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(a)

center (b)

Fig. 1. Schematic showing (a) plan and (b) elevation view of the flow.
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Fig. 2. Development of two layer flow (for a channel with bmax=0.3 m).
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Fig. 3. Propagation of a wave through the channel.
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Fig. 4. Barotropic flux measured at the left hand boundary.
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Fig. 5. Flux anomaly with different values of g′ and L, scaled by the quasi-steady flux.
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(a)

(b)

Fig. 6. Observed (a) height and (b) flux amplitudes are plotted against γ for different imposed
a+
e amplitudes.
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(a)

(b)

Fig. 7. Flux is plotted against γ with (a) measured height amplitude and (b) measured flux
amplitude in colour.
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(a)

(b)

Fig. 8. Flux is plotted against (a) measured height amplitude and (b) measured flux amplitude,
with γ in colour. Solid circles show the original points from which the other points have been
interpolated.
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